Fragile X Syndrome

704 Users are discussing this topic

PatientPlus articles are written by UK doctors and are based on research evidence, UK and European Guidelines. They are designed for health professionals to use, so you may find the language more technical than the condition leaflets.

Fragile X syndrome (FXS) is an inherited condition which presents with typical behavioural, developmental and physical problems.

FXS is the most common cause of sex-linked, general learning disability. It is one of a number of repeat expansion disorders. In DNA coding it is common to see repeated sequences of the nucleotides that make up the genetic strand. In FXS there is an expansion of the number of repeat sequences in the fragile X mental retardation (FMR1) gene. This gene is on the X chromosome (Xq28). The nucleotides involved are cytosine (C) and guanine (G) and the repeated sequence is CGG. In the most common form of the condition, the CGG sequence is repeated more than 200 times. The metabolic result of this is to block production of a substance called fragile X mental retardation protein (FMRP).

In normal people the trinucleotide sequence is repeated 6-54 times. People in whom the sequence is repeated over 200 times have the full mutation, which causes a deficiency in FMRP and thereby the full clinical syndrome. If there are between 55 and 200 repeats, there may be a "premutation". In these individuals, FMRP is produced but there is a risk of expansion in subsequent generations. The premutation alleles also confer a risk of associated fragile-X disorders (fragile X-associated tremor/ataxia disorder and fragile X-associated primary ovarian insufficiency).

NEW - log your activity

  • Notes
    Add notes to any clinical page and create a reflective diary
  • Track
    Automatically track and log every page you have viewed
  • Print
    Print and export a summary to use in your appraisal
Click to find out more »

A UK screening study in 2003 estimated an overall prevalence of FXS in the general population of 2.3/10,000 (or 1 in 4,425).[3]

Other estimates suggest it is present in 1 in 4,000 males and 1 in 8,000 females but that this may be an underestimation. Prevalence depends on the population studied.

The premutation is far more common. Two to four times as many females as males carry the gene abnormality. This has an estimated prevalence of 1 in 130-260 females and 1 in 250-810 males.[4] 

  • An individual with FXS typically has learning difficulties (IQ less than 70) and delayed milestones, along with typical physical features such as a high forehead, large testicles (2-3 times normal size), facial asymmetry, a large jaw and long ears.
  • There may be features due to changes in connective tissue including prominent ears, hyperextensible finger joints, mitral valve prolapse, soft skin and flat feet.
  • There may be associated anxiety-related symptoms including obsessive-compulsive and perseverative behaviours, emotional lability and aggressive or self-aggressive behaviours. Affected girls and women are more likely to have problems with shyness or social withdrawal. In some cases, those affected may also have a diagnosis of attention deficit hyperactivity disorder (ADHD) or an autism spectrum disorder. Around 30% of affected males have autism and as many again may have an autism spectrum disorder.[2][6] 
  • Other symptoms may include hand-flapping, repetitive actions, clumsiness, avoidance of gaze, seizures and sleep disturbance.
  • Specific speech disorders may include echolalia and perseveration (the inability to complete a sentence due to repetition of words at the end of a phrase).

The diagnosis is usually made by the age of 3 due to delay in attainment of developmental milestones.

  • A detailed family history is useful as there may be features across the generations of premutation.
  • A blood sample (or chorionic villus biopsy) can be sent for DNA analysis. Most laboratories currently use a combination of Southern blotting (detects full mutations) and polymerase chain reaction (PCR) testing (identifies pre-mutations and smaller CGG repeats). Southern blotting involves transferring DNA material from an agar gel on to a membrane. Electrophoresis applied to this membrane can then be used to identify a particular DNA sequence. PCR is used as polymerase enzyme to amplify a particular DNA region, making identification easier.
  • A refinement of this technique, using capillary action to separate DNA fragments of differing size, enables the rapid testing of large numbers of samples, making the method suitable as a newborn screening test.[7][8]

There is currently no cure for FXS but a number of pharmacological, behavioural and cognitive interventions may improve quality of life.

Interventions include:

  • Speech therapy.
  • Special needs education.
  • Behavioural therapy.
  • Stimulants such as dextroamfetamine and methylphenidate for those with associated ADHD.
  • Selective serotonin reuptake inhibitors (SSRIs) for symptoms of anxiety.
  • Antipsychotics for mood stabilisation, improving attention and reducing anxiety - particularly aripiprazole.
  • Anticonvulsants where seizures are present.
  • Genetic counselling and support of the parents and other family members.

There is very little evidence for the efficacy of any of the pharmacological or behavioural therapies commonly used.[11][12][13]

Future prospects, however, look to have potential. A number of promising targeted clinical trials in recent years have had disappointing results due to a number of factors including variable phenotypes/characteristics of those with FXS, difficulty in measuring outcomes and lack of translation of results in genetically altered mice to humans. Compounds for which trials have been completed with disappointing results have aimed to modify the FMRP targets and thus restore excitation/inhibitory signalling pathways. These include metabotropic glutamate receptor 5 antagonists, memantine, lithium, GABA/glutamate normalisers, minocycline and acetyl cholinesterase inhibitors. Folate therapy has been tried in the past and was the subject of a Cochrane review in 2011 but the evidence base was found to be poor and no conclusions could be drawn.[14] 

As understanding of the role FMRP plays at cellular and molecular level continues to improve; further target-based therapies are undergoing trials.

There is no shortening of life expectancy. Outcome in general varies with the degree of intellectual disability and expression of other characteristics, which vary widely.

The UK National Screening Programme Committee decided not to institute a national newborn screening programme (January 2011). Likewise in the USA, FXS is not part of the newborn screening programme but this remains a controversial issue.[15] 

Currently, the policy is to restrict screening to carrier identification within affected families. It may also be worthwhile screening children with learning difficulties, aiming to identify more families and to enable carriers to have prenatal counselling.

Further reading & references

  • The Fragile X Society
  • Sethna F, Moon C, Wang H; From FMRP function to potential therapies for fragile X syndrome. Neurochem Res. 2014 Jun;39(6):1016-31. doi: 10.1007/s11064-013-1229-3. Epub 2013 Dec 18.
  • McCary LM, Roberts JE; Early identification of autism in fragile X syndrome: a review. J Intellect Disabil Res. 2013 Sep;57(9):803-14. doi: 10.1111/j.1365-2788.2012.01609.x. Epub 2012 Sep 14.
  • Li Y, Zhao X; Concise review: Fragile X proteins in stem cell maintenance and differentiation. Stem Cells. 2014 Jul;32(7):1724-33. doi: 10.1002/stem.1698.
  • Lozano R, Rosero CA, Hagerman RJ; Fragile X spectrum disorders. Intractable Rare Dis Res. 2014 Nov;3(4):134-46. doi: 10.5582/irdr.2014.01022.
  1. FMR1 Gene, FMR1; Online Mendelian Inheritance in Man (OMIM)
  2. Usdin K, Hayward BE, Kumari D, et al; Repeat-mediated genetic and epigenetic changes at the FMR1 locus in the Fragile X-related disorders. Front Genet. 2014 Jul 17;5:226. doi: 10.3389/fgene.2014.00226. eCollection 2014.
  3. Song FJ, Barton P, Sleightholme V et al; Screening for fragile X syndrome: a literature review and modelling study; Health Technol Assess 2003; 7(16)
  4. Hagerman PJ; The fragile X prevalence paradox. J Med Genet. 2008 Aug;45(8):498-9. doi: 10.1136/jmg.2008.059055. Epub 2008 Apr 15.
  5. Chonchaiya W, Schneider A, Hagerman RJ; Fragile X: a family of disorders. Adv Pediatr. 2009;56:165-86. doi: 10.1016/j.yapd.2009.08.008.
  6. Wang LW, Berry-Kravis E, Hagerman RJ; Fragile X: leading the way for targeted treatments in autism. Neurotherapeutics. 2010 Jul;7(3):264-74. doi: 10.1016/j.nurt.2010.05.005.
  7. Strom CM, Huang D, Li Y, et al; Development of a novel, accurate, automated, rapid, high-throughput technique suitable for population-based carrier screening for Fragile X syndrome. Genet Med. 2007 Apr;9(4):199-207.
  8. Tassone F, Pan R, Amiri K, et al; A rapid polymerase chain reaction-based screening method for identification of all expanded alleles of the fragile X (FMR1) gene in newborn and high-risk populations. J Mol Diagn. 2008 Jan;10(1):43-9. Epub 2007 Dec 28.
  9. Bagni C, Tassone F, Neri G, et al; Fragile X syndrome: causes, diagnosis, mechanisms, and therapeutics. J Clin Invest. 2012 Dec;122(12):4314-22. doi: 10.1172/JCI63141. Epub 2012 Dec 3.
  10. Schaefer TL, Davenport MH, Erickson CA; Emerging pharmacologic treatment options for fragile X syndrome. Appl Clin Genet. 2015 Apr 7;8:75-93. doi: 10.2147/TACG.S35673. eCollection 2015.
  11. Hall SS; Treatments for fragile X syndrome: a closer look at the data. Dev Disabil Res Rev. 2009;15(4):353-60. doi: 10.1002/ddrr.78.
  12. Hagerman RJ, Berry-Kravis E, Kaufmann WE, et al; Advances in the treatment of fragile X syndrome. Pediatrics. 2009 Jan;123(1):378-90. doi: 10.1542/peds.2008-0317.
  13. Rueda JR, Ballesteros J, Tejada MI; Systematic review of pharmacological treatments in fragile X syndrome. BMC Neurol. 2009 Oct 13;9:53. doi: 10.1186/1471-2377-9-53.
  14. Rueda JR, Ballesteros J, Guillen V, et al; Folic acid for fragile X syndrome. Cochrane Database Syst Rev. 2011 May 11;(5):CD008476. doi: 10.1002/14651858.CD008476.pub2.
  15. Tassone F; Newborn screening for fragile X syndrome. JAMA Neurol. 2014 Mar;71(3):355-9. doi: 10.1001/jamaneurol.2013.4808.

Disclaimer: This article is for information only and should not be used for the diagnosis or treatment of medical conditions. EMIS has used all reasonable care in compiling the information but make no warranty as to its accuracy. Consult a doctor or other health care professional for diagnosis and treatment of medical conditions. For details see our conditions.

Original Author:
Dr Laurence Knott
Current Version:
Peer Reviewer:
Dr Adrian Bonsall
Document ID:
2169 (v24)
Last Checked:
Next Review:

Did you find this health information useful?

Yes No

Thank you for your feedback!

Subcribe to the Patient newsletter for healthcare and news updates.

We would love to hear your feedback!

Patient Access app - find out more Patient facebook page - Like our page