Hand-arm Vibration Syndrome

budertv brenda58033 matthew92138 246 Users are discussing this topic

PatientPlus articles are written by UK doctors and are based on research evidence, UK and European Guidelines. They are designed for health professionals to use, so you may find the language more technical than the condition leaflets.

See also: Hand-arm Vibration Syndrome written for patients

Synonyms: HAVS, vibration white finger, VWF

Prolonged exposure to hand-arm vibration may cause a potentially disabling chronic disorder of the upper limbs, which is called the hand-arm vibration syndrome (HAVS). As well as vascular and neurological injury, HAVS may also involve damage to bones, joints, muscles and tendons in the upper limbs. There may also be damage to the motor nerves innervating the hand muscles. HAVS is therefore a significant health risk for many occupations, especially in temperate climates.[1] 

As a general rule, if caught early and effective action taken to prevent further insult, recovery will occur; however, it may not in advanced cases.

HAVS is potentially very serious and disabling. Nearly two million people in the UK are at risk of developing HAVS.

The development of HAVS depends on several factors, including the intensity and duration of exposure, the type of processes involved and the tools used, as well as genetic and ergonomic factors.[3] 

Symptoms and signs of HAVS may occur even after a short duration of vibration exposure.[4][5]

Tools most likely to create a risk include chainsaws, grinders, impact drills, scaling hammers, mowers, floor saws, floor polishers, powered hammers (for chipping, demolition, road breaking, etc), sanders and polishers and hand-held saws used for concrete, metal, ground clearance, etc. Jobs involving regular and frequent exposure to vibration are found in a wide range of industries, including:

  • Construction and civil work.
  • Engineering.
  • Forestry.
  • Foundries.
  • Motor vehicle manufacture and repair.
  • Maintenance of parks, gardens, verges, grounds, etc.
  • Shipbuilding and ship repair.
  • Utilities (eg, gas, water, telecommunications).

NEW - log your activity

  • Notes
    Add notes to any clinical page and create a reflective diary
  • Track
    Automatically track and log every page you have viewed
  • Print
    Print and export a summary to use in your appraisal
Click to find out more »

Risk factors

The essential risk factor is the use of vibrating tools. Other risk factors are said to be beta-blockers, cigarette smoking and exposure to cold. The evidence with regard to smoking may be inconclusive but smoking is known to have an adverse effect on circulation. Vascular features are more common in a cold and damp climate.

The main features are neurological and vascular.

  • Neurological features - responsible for the subjective numbness, tingling and pain and the neurological signs of sensory deficits, especially to fine touch discrimination and temperature. There is also reduced manual dexterity and muscle weakness with impaired strength of grip.
  • Vascular features are blanching of the fingers, especially after exposure to cold and with delayed or poor recovery thereafter. This is a secondary Raynaud's phenomenon and patients often report white fingers in the morning or after outdoor activity.
  • There may be other manifestations from damage to bone and muscle. Dupuytren's contracture can result from cumulative trauma to the palm of the hand. Other effects that have been reported include exostoses and cysts in carpal bones, carpal tunnel syndrome and osteoarthritis.

For diagnosis, the following are required:[7]

  • Evidence of long-term exposure to vibration.
  • Episodes of digital pallor, with or without confirmed sensorineural effects.
  • Exclusion of other causes of Raynaud's phenomenon or sensory changes.
  • Diagnosis would be supported by finding of associated musculoskeletal features, calluses on the hand, loss of sensation in the digits affected and muscle weakness. These may not be apparent in the early stages of disease.

There is controversy about the interpretation of some tests for the purposes of industrial compensation, so a number of standardised investigations should be used.[10] Tests available include:

  • The vibrotactile threshold test, which is used to test the mechanoreceptors. They respond to stretch, edge and texture and the receptors respond at different frequencies. Measurements are taken from the median nerve (index finger) and the ulnar nerve (little finger) in each hand at two frequencies.
  • The thermal aesthesiometry test, which assesses the thermal receptors' threshold. Readings are again taken from the median nerve and the ulnar nerve.
  • The Purdue Pegboard test, which is a measure of dexterity and detects loss of fine movement to both hands.
  • The grip force measurement test, which measures the grip strength of both hands. This test is not scored but is a useful indication of vibration damage to muscles of the hand and forearm.
  • In addition, tests may be used to assess the vascular component. Finger systolic blood pressure measurement follows cooling of the digits and measures interruption of blood flow in response to cold. When interpreting results it should be noted that there is a difference in pressure between the dorsal and palmar surfaces of the hand.[11]
  • The cold provocation test, which provides visual evidence of blanching.

In 1999 a large number of coal miners needed assessment to provide evidence for legal proceedings. Pragmatically, it was considered that a symptomatic history, occupational history and a combination of vibrotactile thresholds, thermal aesthesiometry and cold water provocation testing would be sufficient to diagnose most cases.[12]

The Stockholm system is often used to grade severity:[12] 

Sensorineural component

  • 0SN - exposed to vibrations but no symptoms.
  • 1SN - intermittent numbness +/- tingling.
  • 2SN - numbness (intermittent or continuous) with loss of feeling of touch.
  • 3SN - numbness (intermittent or continuous) with loss of discrimination by touch +/- manual dexterity.

Vascular component

  • Stage 1 - mild, with only occasional attacks affecting the tips of one or more fingers.
  • Stage 2 - moderate, with occasional attacks affecting the distal or middle phalanges of one or more fingers.
  • Stage 3 - severe, with frequent attacks affecting all phalanges of most fingers.
  • Stage 4 - very severe, as Stage 3, plus trophic changes in fingertips.

The hazard to health from vibration is usually assessed from the average acceleration level of the vibrating surface. A weighting is applied to take into account the variation in damage at different frequencies to give a frequency-weighted acceleration 'A' normally expressed in m/s2. If the implement is to be used for up to four hours a day this is called the A4 and, for up to eight hours a day, the A8.[2]


Eliminate the source of vibration if possible or consider redeployment, keeping the body warm, and stopping smoking.[13] Apply the principles outlined under 'Prevention', below.


These have little part to play. Nifedipine or another calcium-channel blocker may be useful to improve the vascular effects of HAVS.

HAVS can have a considerable impact on the quality of life (eg, pain, difficulties with daily activities, anxiety and depression).[15][16] 

Early redeployment can halt or reverse progression of symptoms but, in severe cases, these continue even after removal of the source of vibration.[17]

If possible, a different technique should be used to avoid the exposure to vibration. Tools must be well maintained. Duration of exposure should be minimised and frequent breaks taken. For those at risk, periodic assessment is advised.

The Control of Vibration at Work Regulations 2005, which came into force in July 2005, placing a legal obligation on employers to assess and identify measures to eliminate or reduce risks from exposure to hand-arm vibration, ensure that control measures to reduce vibration are properly applied and that information, training and health surveillance are provided.

Further reading & references

  1. Mahbub MH, Kurozawa Y, Ishitake T, et al; A systematic review of diagnostic performance of quantitative tests to assess musculoskeletal disorders in hand-arm vibration syndrome. Ind Health. 2015 Jun 6.
  2. Hand-arm vibration at work, Health and Safety Executive, 2005
  3. Gerhardsson L, Hagberg M; Work ability in vibration-exposed workers. Occup Med (Lond). 2014 Dec;64(8):629-34. doi: 10.1093/occmed/kqu121. Epub 2014 Aug 21.
  4. Barregard L, Ehrenstrom L, Marcus K; Hand-arm vibration syndrome in Swedish car mechanics. Occup Environ Med. 2003 Apr;60(4):287-94.
  5. Gerhardsson L, Burstrom L, Hagberg M, et al; Quantitative neurosensory findings, symptoms and signs in young vibration exposed workers. J Occup Med Toxicol. 2013 Mar 27;8(1):8. doi: 10.1186/1745-6673-8-8.
  6. Guide to good practice on Hand-Arm Vibration; EU Good Practice Guide, 2006
  7. Pelmear PL; The clinical assessment of hand-arm vibration syndrome. Occup Med (Lond). 2003 Aug;53(5):337-41.
  8. Cooke RA; Hypothenar hammer syndrome: a discrete syndrome to be distinguished from hand-arm vibration syndrome. Occup Med (Lond). 2003 Aug;53(5):320-4.
  9. Cooke RA; Thoracic outlet syndrome-aspects of diagnosis in the differential diagnosis of hand-arm vibration syndrome. Occup Med (Lond). 2003 Aug;53(5):331-6.
  10. Harada N, Mahbub MH; Diagnosis of vascular injuries caused by hand-transmitted vibration. Int Arch Occup Environ Health. 2008 Apr;81(5):507-18. Epub 2007 Sep 26.
  11. Mahbub MH, Harada N; Digital blood flow and temperature responses in palmar and dorsal skin induced by short-term vibration exposure while grasping a vibratory handle. Int Arch Occup Environ Health. 2008 Jul;81(7):889-97. Epub 2007 Dec 5.
  12. Lawson IJ, McGeoch KL; A medical assessment process for a large volume of medico-legal compensation claims for hand-arm vibration syndrome. Occup Med (Lond). 2003 Aug;53(5):302-8.
  13. Falkiner S; Diagnosis and treatment of hand-arm vibration syndrome and its relationship to carpal tunnel syndrome. Aust Fam Physician. 2003 Jul;32(7):530-4.
  14. Weir E, Lander L; Hand-arm vibration syndrome. CMAJ. 2005 Apr 12;172(8):1001-2.
  15. Sauni R, Virtema P, Paakkonen R, et al; Quality of life (EQ-5D) and hand-arm vibration syndrome. Int Arch Occup Environ Health. 2009 Jul 11.
  16. House R, Wills M, Liss G, et al; The effect of hand-arm vibration syndrome on quality of life. Occup Med (Lond). 2014 Mar;64(2):133-5. doi: 10.1093/occmed/kqt167. Epub 2014 Feb 2.
  17. Friden J; Vibration damage to the hand: clinical presentation, prognosis and length and severity of vibration required. J Hand Surg (Br). 2001 Oct;26(5):471-4.
  18. Advice for Employers - Hand-arm vibration; Health and Safety Executive

Disclaimer: This article is for information only and should not be used for the diagnosis or treatment of medical conditions. EMIS has used all reasonable care in compiling the information but make no warranty as to its accuracy. Consult a doctor or other health care professional for diagnosis and treatment of medical conditions. For details see our conditions.

Original Author:
Dr Laurence Knott
Current Version:
Peer Reviewer:
Dr John Cox
Document ID:
2229 (v23)
Last Checked:
Next Review:

Did you find this health information useful?

Yes No

Thank you for your feedback!

Subcribe to the Patient newsletter for healthcare and news updates.

We would love to hear your feedback!

Patient Access app - find out more Patient facebook page - Like our page