Pneumothorax

136 Users are discussing this topic

PatientPlus articles are written by UK doctors and are based on research evidence, UK and European Guidelines. They are designed for health professionals to use, so you may find the language more technical than the condition leaflets.

See also: Pneumothorax written for patients

A pneumothorax refers to a collection of air in the pleural cavity (between the lung and the chest wall) resulting in collapse of the lung on the affected side. The extent of the collapse of the lung is dependent upon the amount of air that is present. Pneumothoraces can be classified into:[1] 

  • Primary spontaneous pneumothorax: pneumothorax occurring in healthy people.
  • Secondary pneumothorax:
    • Associated with underlying lung disease - eg, rupture of a congenital bulla or a cyst in chronic obstructive pulmonary disease (COPD).
    • The consequences of a pneumothorax in patients with pre-existing lung disease are significantly greater and the management is potentially more difficult.

Other causes of a pneumothorax may include:

  • Traumatic pneumothorax follows a penetrating chest trauma such as a stab wound, gunshot injury or a fractured rib.
  • Iatrogenic pneumothorax may follow a number of procedures such as mechanical ventilation and interventional procedures such as central line placement, lung biopsy and percutaneous liver biopsy.
  • Catamenial pneumothorax refers to pneumothorax at the time of menstruation.[2] The aetiology is endometriosis. It represents 3-6% of spontaneous pneumothorax in women. Patients are typically aged 30-40 years with a history of pelvic endometriosis in 20-40%. Over 90% occur in the right lung and it occurs within 72 hours from the onset of menstruation. In women receiving hormonal treatment, 50% will have a recurrence within a year.
Do not forget that acute severe asthma may have an underlying pneumothorax.

Tension pneumothorax

Tension pneumothorax is a life-threatening emergency that requires instant action. Severe symptoms and signs of respiratory distress suggest the presence of tension pneumothorax.[1] 

  • Treatment is with oxygen and emergency needle decompression.
  • Insert a large-bore needle into the pleural space through the second or third anterior intercostal space. A gush of air confirms the diagnosis. A standard cannula may be insufficiently long if used in the second intercostal space.
  • Typical clinical situations where tension pneumothorax arises include:
    • Ventilated patients
    • Trauma patients
    • Resuscitation patients (CPR)
    • Lung disease, especially acute presentations of asthma and COPD
    • Blocked, clamped or displaced chest drains
    • Patients receiving non-invasive ventilation
    • Patients undergoing hyperbaric oxygen treatment
  • The incidence of primary spontaneous pneumothorax (PSP) is 24/100,000 a year in men and 9.9/100,000 a year in women in England and Wales.[3] 
  • PSP occurs most often in the 20s, and PSP rarely occurs over the age of 40. Secondary spontaneous pneumothorax (SSP) typically occurs between the ages of 60 and 65.

NEW - log your activity

  • Notes
    Add notes to any clinical page and create a reflective diary
  • Track
    Automatically track and log every page you have viewed
  • Print
    Print and export a summary to use in your appraisal
Click to find out more »

Risk factors

  • Patients affected by PSP tend to be tall.[1] Marfan's syndrome or a Marfan's habitus increases the risk.
  • Smoking increases the risk of pneumothorax. Smoking is associated with a 12% risk of developing pneumothorax in healthy smoking men compared with 0.1% in non-smokers.[1] 
  • Pneumothorax is not usually associated with physical exertion and the onset is just as likely to occur during sedentary activity.[1] 
  • Subpleural blebs and bullae are found at the lung apices at thoracoscopy and on CT scanning in up to 90% of cases of primary spontaneous pneumothorax.[1] 
  • SSP can occur with various underlying lung conditions, including COPD, tuberculosis, sarcoidosis, cystic fibrosis, malignancy, and idiopathic pulmonary fibrosis. It may also occur with Pneumocystis jirovecii infection in AIDS.
  • Over 10% of patients with PSP report a positive family history of the disease.[4] 

Symptoms in PSP may be minimal or absent. In contrast, symptoms are greater in SSP, even if the pneumothorax is relatively small in size.[1] 

  • Sudden onset of pain is typical.
  • There may well be some shortness of breath, depending upon the size of the lesion. It tends to be more severe in secondary pneumothorax as there is less reserve.
  • Around two thirds of patients will have both pain and dyspnoea. However, a significant number may have no symptoms and thus a high index of suspicion is needed.

Examination

  • The patient often looks distressed and is sweating. Dyspnoea may be apparent and even cyanosis, depending upon the degree of respiratory inadequacy.
  • Pulse examination:
    • Tachycardia is common but a pulse rate above 135 beats per minute suggests tension pneumothorax.
    • Pulsus paradoxicus suggests a severe pneumothorax. Pulsus paradoxicus occurs when the pulse slows on inspiration. This is the opposite to sinus arrhythmia where there is a slight acceleration of the pulse with inspiration.
  • Hypotension may occur and jugular venous pressure (JVP) may be raised, especially in tension pneumothorax.
  • Examination of the chest:
    • May show that the affected side moves less than the normal side. The best way to elicit this is to place your hands on each side of the patient's chest and to feel the movement when you ask him or her to take a deep inspiration.
    • The trachea is deviated away from the side of collapse especially in tension pneumothorax.
    • Percussion reveals hyper-resonance over the collapse.
    • Breath sounds are reduced or absent over the affected area.
    • Bilateral pneumothorax is unusual but the lack of asymmetry of the chest will make clinical diagnosis more difficult.
  • There are specific problems for those who are being ventilated. High peak airway pressure suggests an impending pneumothorax. There will be difficulty ventilating the patient during resuscitation. A tension pneumothorax causes progressive difficulty with ventilation, as the normal lung is compressed.
  • CXR:[1]
    • Standard erect CXRs in inspiration are recommended for the initial diagnosis of pneumothorax.
    • Lateral X-rays may provide additional information when a suspected pneumothorax is not confirmed by a PA chest film. However, they are no longer used routinely.
    • Expiratory films are not thought to confer any additional benefit in the routine assessment of pneumothorax.
  • Ultrasound:
    • Specific features on ultrasound scanning are diagnostic of pneumothorax but the main value of ultrasound has been in the management of supine trauma patients.[1]
    • However, ultrasound has been shown in one study to be more accurate than CXR for detection of pneumothorax.[5]
  • CT scanning is recommended for uncertain or complex cases.[1]
  • Arterial blood gases will show hypoxia, the degree being dependent upon the severity of the condition. It tends to be more disturbed in SSP, as there is less reserve in the presence of pre-existing lung disease. They probably only need to be done if oxygen saturations are <92%.

The size of the pneumothorax determines the rate of resolution and is a relative indication for active intervention. To calculate the size of a pneumothorax: There are various methods that one can use, but the technique recommended by the British Thoracic Society is to measure the distance between the pleural surface and the lung edge (at the level of the hilum). If this is 2 cm or more, it represents a pneumothorax of at least 50% of the hemithorax and is an indication for drainage. However, in order to determine a management strategy the clinical situation also needs to be taken into account.[1] 

  • Pleural effusion tends to be slower in onset and there is dullness on percussion.
  • Chest pain: a pleuritic pain may give a sensation of breathlessness. Examples include pleurodynia and Bornholm disease.
  • Pulmonary embolism may produce haemoptysis and a few rales over the affected area. It more commonly affects the lower rather than the upper lungs.

Tension pneumothorax requires immediate attention.

Simple observation, needle aspiration and chest drain are all possibilities and the choice will depend upon the severity of the condition. There is much national and international controversy surrounding the most appropriate initial treatment of pneumothoraces, especially those <50%.[6] 

Generally, the more symptomatic the patient, the more active intervention should be utilised. Large pneumothoraces should usually be drained, even if there are minimal or no symptoms, as this speeds the resolution. However, expanding the lung has adverse effects on stopping the air leak, and so observation without rapidly expanding the lung may be the best management. It has been reported that conservative management of even large pneumothoraces is possible if there is no underlying lung disease.[7] 

For those patients admitted to hospital, referral to a respiratory physician should be made within 24 hours of admission.[1] 

Management of SSP[1] 

  • All patients with SSP should be admitted to hospital for at least 24 hours and receive supplemental oxygen.
  • Most patients will require the insertion of a small-bore chest drain.
  • All patients will require early referral to a chest physician.
  • Those with a persistent air leak should be discussed with a thoracic surgeon at 48 hours.

Immediate management

Oxygen should be given. This helps relieve hypoxia and it accelerates resorption of the pneumothorax compared with breathing air.

Observation

Patients with a small PSP without breathlessness should be considered for discharge with early outpatient review. These patients should also receive clear written advice to return in the event of worsening breathlessness.[1] 

  • A small pneumothorax of 15% or less can be managed by observation, using both clinical assessment and CXR to ascertain that it is not enlarging.
  • Iatrogenic pneumothorax does not normally require a chest drain.
  • There is currently insufficient evidence to determine whether any particular intervention is more effective than no intervention for spontaneous pneumothorax.[3] 
  • Breathlessness indicates the need for active intervention as well as supportive treatment (including oxygen).[1] 

Simple aspiration

Indications for simple aspiration, also called thoracentesis, include PSP (any size) and small SSP in patients aged under 50 years.[1] 

Needle (14-16 G) aspiration is as effective as large-bore (>20 F) chest drains and may be associated with reduced hospitalisation and length of stay.[1] 

  • The puncture site is commonly in the second or third intercostal space in the midclavicular line or in the fourth or fifth intercostal space over the superior rib margin in the anterior axillary line.
  • Entry should be just above a rib rather than just below it so as to reduce the risk of hitting the neurovascular bundle.
  • Aspiration can even be used without admitting the patient to hospital but all patients who have had a pneumothorax should receive written instructions that if they develop sudden shortness of breath they must return immediately.
  • Needle aspiration should not be repeated unless there were technical difficulties. Following failed needle aspiration, a small-bore (<14 F) chest drain insertion is recommended.[1] 

There is no significant difference between simple aspiration and intercostal tube drainage with regard to the immediate success rate, early failure rate, duration of hospitalisation, one-year success rate and the number of patients requiring pleurodesis at one year. Simple aspiration is associated with a reduction in the proportion of patients hospitalised when compared with intercostal tube drainage.[8] 

Intercostal tube drainage

A chest drain tube is usually required for SSP and for all large lesions. Chest drains are usually required for patients with tension or bilateral pneumothorax who should be admitted to hospital.[1] 

Indications for a chest drain for pneumothorax include:[1] 

  • In any ventilated patient.
  • Tension pneumothorax after initial needle relief.
  • Persistent or recurrent pneumothorax after simple aspiration.
  • Large SSP in patients aged over 50 years.

Pain, intrapleural infection, wound infection, drain dislodgement and drain blockage are the most frequent complications of chest drain insertion. Visceral injury is the most serious complication.[1] 

Antibiotic prophylaxis is not recommended for non-trauma patients requiring a chest drain. Antibiotic prophylaxis should be considered for trauma patients requiring chest drains, especially after penetrating trauma.[1] 

There are concerns regarding the development of re-expansion pulmonary oedema.[9] It is therefore recommended that suction should not be used routinely. Caution is required because of the risk of re-expansion pulmonary oedema. High-volume low-pressure suction systems are recommended.[1] 

Pleurodesis

  • If there has been recurrence or the risk is considered high then prevention of further pneumothorax by pleurodesis should be considered.[10] 
  • Medical pleurodesis may be appropriate for inoperable patients. Chemical pleurodesis can control difficult or recurrent pneumothoraces but, since surgical options are more effective, it should only be used if a patient is either unwilling or unable to undergo surgery.[1] 
  • Complications include failure to prevent recurrence, acute respiratory distress, infection of the pleural space, persistent air leak and re-expansion pulmonary oedema.
  • Simple aspiration and drainage followed by minocycline pleurodesis has been shown to be safe and possibly more effective treatment for PSP than simple aspiration and drainage only.[11] 
  • Pleural abrasion with minocycline pleurodesis has also been shown to be as effective as apical pleurectomy and it is therefore recommended that either technique is appropriate for treating PSP patients with high recurrence risk.[12]
  • One review found that, although the relative risk of recurrence was higher with pleural abrasion compared to pleurectomy, it was not statistically significant.[13]

Surgery[1] 

  • For more difficult cases referral to thoracic surgeons may be considered.[14] 
  • An early (3-5 days) thoracic surgical opinion should be sought in cases of persistent air leak or failure of the lung to re-expand.
  • Open thoracotomy and pleurectomy remains the procedure with the lowest recurrence rate (approximately 1%) for difficult or recurrent pneumothoraces.
  • Video-assisted thoracoscopic surgery (VATS) with pleurectomy and pleural abrasion is better tolerated but has a higher recurrence rate of approximately 5%.
  • Surgical chemical pleurodesis is best achieved by using sterile graded talc, which only rarely causes acute respiratory distress syndrome and empyema.
  • Pregnancy: pneumothorax recurrence is more common in pregnancy and poses risks to the mother and fetus. The less invasive strategies of simple observation and aspiration are usually effective during pregnancy, with elective assisted delivery and regional anaesthesia at or near term. A corrective surgical procedure (VATS) should be considered after delivery.
  • Catamenial pneumothorax: is underdiagnosed in women with pneumothorax. A combination of surgical intervention and hormonal treatment is required.
  • HIV infection: the combination of pneumothorax and HIV infection requires early intercostal tube drainage and surgical referral, in addition to appropriate treatment for HIV and P. jiroveci infection.
  • Cystic fibrosis: the development of a pneumothorax in a patient with cystic fibrosis requires early and aggressive treatment with early surgical referral. Pleural procedures, including pleurodesis, do not have a significant adverse effect on the outcome of subsequent lung transplantation.
  • While death from spontaneous pneumothorax is rare, rates of recurrence are high.
  • SSP is associated with a higher morbidity and mortality than PSP.
  • The risk of recurrence of PSP is as high as 54% within the first four years, with isolated risk factors including smoking, height and age over 60 years.
  • Risk factors for recurrence of SSP include age, pulmonary fibrosis and emphysema.

A patient who smokes must stop smoking to reduce the risk of a first pneumothorax and the risk of recurrence.

Further reading & references

  1. Pleural Disease Guidelines; British Thoracic Society (September 2010)
  2. Korom S, Canyurt H, Missbach A, et al; Catamenial pneumothorax revisited: clinical approach and systematic review of the literature. J Thorac Cardiovasc Surg. 2004 Oct;128(4):502-8.
  3. Wakai AP; Spontaneous pneumothorax. Clin Evid (Online). 2011 Jan 17;2011. pii: 1505.
  4. Chiu HT, Garcia CK; Familial spontaneous pneumothorax. Curr Opin Pulm Med. 2006 Jul;12(4):268-72.
  5. Alrajab S, Youssef AM, Akkus NI, et al; Pleural ultrasonography versus chest radiography for the diagnosis of pneumothorax: review of the literature and meta-analysis. Crit Care. 2013 Sep 23;17(5):R208.
  6. Kelly AM; Treatment of primary spontaneous pneumothorax. Curr Opin Pulm Med. 2009 Jul;15(4):376-9.
  7. Kaneda H, Nakano T, Taniguchi Y, et al; Three-step management of pneumothorax: time for a re-think on initial management. Interact Cardiovasc Thorac Surg. 2013 Feb;16(2):186-92. doi: 10.1093/icvts/ivs445. Epub 2012 Nov 1.
  8. Wakai A, O'Sullivan RG, McCabe G; Simple aspiration versus intercostal tube drainage for primary spontaneous pneumothorax in adults. Cochrane Database Syst Rev. 2007 Jan 24;(1):CD004479.
  9. Echevarria C, Twomey D, Dunning J, et al; Does re-expansion pulmonary oedema exist? Interact Cardiovasc Thorac Surg. 2008 May;7(3):485-9. doi: 10.1510/icvts.2008.178087. Epub 2008 Mar 11.
  10. Suarez PM, Gilart JL; Pleurodesis in the treatment of pneumothorax and pleural effusion. Monaldi Arch Chest Dis. 2013 Jun;79(2):81-6.
  11. Chen JS, Chan WK, Tsai KT, et al; Simple aspiration and drainage and intrapleural minocycline pleurodesis versus simple aspiration and drainage for the initial treatment of primary spontaneous pneumothorax: an open-label, parallel-group, prospective, randomised, controlled trial. Lancet. 2013 Apr 13;381(9874):1277-82. doi: 10.1016/S0140-6736(12)62170-9. Epub 2013 Mar 12.
  12. Chen JS, Hsu HH, Huang PM, et al; Thoracoscopic pleurodesis for primary spontaneous pneumothorax with high recurrence risk: a prospective randomized trial. Ann Surg. 2012 Mar;255(3):440-5. doi: 10.1097/SLA.0b013e31824723f4.
  13. Bille A, Barker A, Maratos EC, et al; Surgical access rather than method of pleurodesis (pleurectomy or pleural abrasion) influences recurrence rates for pneumothorax surgery: systematic review and meta-analysis. Gen Thorac Cardiovasc Surg. 2012 Jun;60(6):321-5. doi: 10.1007/s11748-012-0080-9. Epub 2012 May 8.
  14. Chambers A, Scarci M; In patients with first-episode primary spontaneous pneumothorax is video-assisted thoracoscopic surgery superior to tube thoracostomy alone in terms of time to resolution of pneumothorax and incidence of recurrence? Interact Cardiovasc Thorac Surg. 2009 Dec;9(6):1003-8. doi: 10.1510/icvts.2009.216473. Epub 2009 Sep 21.

Disclaimer: This article is for information only and should not be used for the diagnosis or treatment of medical conditions. EMIS has used all reasonable care in compiling the information but make no warranty as to its accuracy. Consult a doctor or other health care professional for diagnosis and treatment of medical conditions. For details see our conditions.

Original Author:
Dr Colin Tidy
Current Version:
Peer Reviewer:
Prof Cathy Jackson
Document ID:
2626 (v23)
Last Checked:
18/02/2014
Next Review:
17/02/2019

Did you find this health information useful?

Yes No

Thank you for your feedback!

Subcribe to the Patient newsletter for healthcare and news updates.

We would love to hear your feedback!

 
 
Patient Access app - find out more Patient facebook page - Like our page