Skip to content

Haemolytic Anaemia

stuartwudsman yirara mike96003 254 Users are discussing this topic

PatientPlus articles are written by UK doctors and are based on research evidence, UK and European Guidelines. They are designed for health professionals to use, so you may find the language more technical than the condition leaflets.

Haemolysis leads to haemolytic anaemia when bone marrow activity cannot compensate for the increased loss of red blood cells (RBCs).

Normal red cells have a lifespan of about 120 days. The lifespan may be very short in haemolytic anaemia (eg as short as five days in sickle cell anaemia).

Haemolysis may occur by two mechanisms:

NEW - log your activity

  • Notes
    Add notes to any clinical page and create a reflective diary
  • Track
    Automatically track and log every page you have viewed
  • Print
    Print and export a summary to use in your appraisal
Click to find out more »



  • Immune:
  • Autoimmune:
    • Warm antibody type: idiopathic, systemic lupus erythematosus (SLE), lymphoma, chronic lymphatic leukaemia (CLL), Evans' syndrome (thrombocytopenia associated with a positive direct Coombs' test).
    • Cold antibody type: cold haemagglutinin disease, paroxysmal cold haemoglobinuria, Mycoplasma pneumoniae, lymphoma, infectious mononucleosis or other viral infections
    • Drug-related: drug absorbed on to red cell surface, eg penicillins, cephalosporins, or immune complex mediated, eg sulphonamides, sulfasalazine.[1]
  • Non-immune: trauma (cardiac haemolysis, microangiopathic anaemia (found in patients with disseminated intravascular coagulation or haemolytic uraemic syndrome and thrombotic thrombocytopenic purpura), infection (malaria, septicaemia), hypersplenism, membrane disorders, paroxysmal nocturnal haemoglobinuria, liver disease.
  • Risk factors are variable and depend on the underlying cause.
  • Sickle cell disorders mainly affect Africans and some Arabic peoples.[2]
  • Glucose-6-phosphate dehydrogenase (G6PD) deficiency has several variants, divided into five classes according to the level of enzyme activity. These have typical geographic spread. Common locations are the Middle East and the Mediterranean.[3]
  • Autoimmune haemolytic anaemia is slightly more common in females than in males. Most often, it presents in middle-aged and older individuals.


  • Symptoms are due to both anaemia and the underlying disorder. Patients with minimal or long-standing haemolytic anaemia can be asymptomatic.
  • Severe anaemia, especially of sudden onset, may cause tachycardia, dyspnoea, angina and weakness.
  • Gallstones may cause abdominal pain. Bilirubin stones can develop in patients with persistent haemolysis.
  • Haemoglobinuria can occur in patients with intravascular haemolysis, and it produces dark urine.
  • Medication history:


  • Signs of anaemia: general pallor and pale conjunctivae. Tachycardia, tachypnoea and hypotension if severe.
  • Mild jaundice may occur due to haemolysis.
  • Splenomegaly: occurs with some causes, eg hereditary spherocytosis. It may indicate an underlying condition such as CLL, lymphoma or SLE.
  • Leg ulcers may occur in some causes of haemolytic anaemia, eg sickle cell anaemia.
  • Right upper abdominal quadrant tenderness may indicate gallbladder disease.
  • Bleeding and petechiae indicate thrombocytopenia due to Evans' syndrome or thrombotic thrombocytopenic purpura if neurological signs are also present.
  • Signs of underlying disorder, eg malar rash in patients with SLE.

Nonspecific findings

  • FBC:
    • Platelet count: normal in most haemolytic anaemias. Thrombocytopenia can occur in SLE, CLL, and microangiopathic haemolytic anaemia (defective prosthetic cardiac valves, thrombotic thrombocytopenic purpura, haemolytic uraemic syndrome and disseminated intravascular coagulation).
    • A normal MCV and mean corpuscular haemoglobin (MCH): consistent with a normocytic hypochromic anaemia.[4]
    • High MCH and MCH concentration (MCHC): suggest spherocytosis.
  • Coombs' test: the direct Coombs' test is used clinically when immune-mediated haemolytic anaemia (antibody-mediated destruction of RBCs) is suspected.
  • Cold agglutinins: a high titre of anti-I antibody may be found in mycoplasma infections and a high titre of anti-I antibody may be found in haemolysis associated with infectious mononucleosis. An anti-P cold agglutinin may be seen in paroxysmal cold haemoglobinuria.
  • Ultrasound to estimate spleen size: physical examination is not reliable.
  • CXR and ECG: may be needed to assess cardiopulmonary status.

Assess presence of haemolysis

  • Red cell destruction:
    • Reduced haemoglobin.
    • Spherocytes, fragmented red cells, nucleated red cells or other abnormal red cells.
    • Increased serum unconjugated bilirubin, increased lactate dehydrogenase (LDH) and reduced or absent haptoglobin.
    • Increased urinary urobilinogen, haemosiderinuria.
  • Increased red cell production:
    • Increased reticulocytosis: may also be due to blood loss or a bone marrow response to iron, vitamin B12 or folate deficiencies.
    • Increased red cell MCV (due to reticulocytosis; but there are many other causes, eg vitamin B12 and folate deficiency.

Determine if the haemolysis is intravascular

  • Increased plasma haemoglobin.
  • Methaemoglobinaemia.
  • Haemoglobinuria.

Identify the cause

  • Genetic:
    • Red cell morphology: spherocytes (suggest congenital spherocytosis or autoimmune haemolytic anaemia), elliptocytes, schistocytes (fragmented red cells suggesting thrombotic thrombocytopenic purpura, haemolytic uraemic syndrome or mechanical damage).
    • Screen for sickle cell: sickling under reduced conditions.
    • Haemoglobin electrophoresis.
    • Red cell enzyme assays.
  • Acquired:
    • Antibodies: IgG warm antibodies in autoimmune haemolytic anaemia react at 37°C whereas IgM cold antibodies react at lower temperatures, ie 20°C or below.[5] The direct antiglobulin test is usually, but not always, positive in autoimmune haemolytic anaemia.
    • Red cell morphology: eg haemolytic uraemic syndrome, thrombotic thrombocytopenic purpura.

General measures

Administer folic acid because active haemolysis may cause folate deficiency.

Discontinue medications that may have precipitated or aggravated haemolysis.

Transfusion therapy

Avoid transfusions unless absolutely necessary, but they may be essential.

In autoimmune haemolytic anaemia, type-matching and cross-matching may be difficult.

Use the least incompatible blood if transfusions are indicated. The risk of acute haemolysis of transfused blood is high, but the degree depends on the rate of infusion.

Iron therapy

This is indicated for patients with severe intravascular haemolysis in which persistent haemoglobinuria has caused substantial iron loss.

NB: iron stores increase in haemolysis and so iron administration is generally contra-indicated in haemolytic disorders, particularly those that require chronic transfusion support.

Autoimmune haemolytic anaemia therapy

Corticosteroids are indicated for the warm type. Other immunosuppressive drugs, eg azathioprine and cyclophosphamide, may be required if steroids fail.[6] Rituximab - a monoclonal antibody against CD20 - has been successfully used in refractory idiopathic autoimmune haemolytic anaemia in children.[7]

The anaemia in cold type is usually mild and there is no need for correction. Management includes keeping extremities warm. Steroids and splenectomy are less successful and transfusions should be avoided if possible.


This may be the first choice of treatment in some types of haemolytic anaemia such as hereditary spherocytosis.[8] In other cases it is recommended when other measures have failed.

Splenectomy is usually not recommended in haemolytic disorders such as cold agglutinin haemolytic anaemia.

  • Anaemia may lead to high-output cardiac failure.
  • Jaundice creates problems associated with increased unconjugated bilirubin.
  • In patients with intravascular haemolysis, iron deficiency due to chronic haemoglobinuria can exacerbate anaemia and weakness.

Further reading & references

  1. Teplitsky V, Virag I, Halabe A; Immune complex haemolytic anaemia associated with sulfasalazine. BMJ. 2000 Apr 22;320(7242):1113.
  2. Sickle Cell Anemia; Online Mendelian Inheritance in Man (OMIM)
  3. Glucose-6-phosphate Dehydrogenase (G6PD) Deficiency; Online Mendelian Inheritance in Man (OMIM)
  4. Dhaliwal G, Cornett PA, Tierney LM Jr; Hemolytic anemia. Am Fam Physician. 2004 Jun 1;69(11):2599-606.
  5. Shah A; Acquired hemolytic anemia. Indian J Med Sci. 2004 Dec;58(12):533-6.
  6. Zeerleder S; Autoimmune haemolytic anaemia - a practical guide to cope with a diagnostic and Neth J Med. 2011 Apr;69(4):177-84.
  7. Quartier P, Brethon B, Philippet P, et al; Treatment of childhood autoimmune haemolytic anaemia with rituximab. Lancet. 2001 Nov 3;358(9292):1511-3.
  8. Perrotta S, Gallagher PG, Mohandas N; Hereditary spherocytosis. Lancet. 2008 Oct 18;372(9647):1411-26.

Disclaimer: This article is for information only and should not be used for the diagnosis or treatment of medical conditions. EMIS has used all reasonable care in compiling the information but make no warranty as to its accuracy. Consult a doctor or other health care professional for diagnosis and treatment of medical conditions. For details see our conditions.

Original Author:
Dr Hayley Willacy
Current Version:
Peer Reviewer:
Prof Cathy Jackson
Document ID:
2219 (v23)
Last Checked:
Next Review:
Patient Access app - find out more Patient facebook page - Like our page

People talking about Haemolytic Anaemia